The Randomized Integer Convex Hull

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Randomized Integer Convex Hull

Let K ⊂ R d be a sufficiently round convex body (the ratio of the circumscribed ball to the inscribed ball is bounded by a constant) of a sufficiently large volume. We investigate the randomized integer convex hull I L (K) = conv(K ∩L), where L is a randomly translated and rotated copy of the integer lattice Z d. We estimate the expected number of vertices of I L (K), whose behaviour is similar...

متن کامل

The Integer Hull of a Convex Rational Polytope

Given A ∈ Zm×n and b ∈ Z, we consider the integer program max{c′x|Ax = b;x ∈ N} and provide an equivalent and explicit linear program max{ĉ′q|Mq = r; q ≥ 0}, where M, r, ĉ are easily obtained from A, b, c with no calculation. We also provide an explicit algebraic characterization of the integer hull of the convex polytope P = {x ∈ R|Ax = b;x ≥ 0}. All strong valid inequalities can be obtained f...

متن کامل

Randomized Triangle Algorithms for Convex Hull Membership

The triangle algorithm introduced in [6], tests if a given p ∈ R lies in the convex hull of a set S of n points in R. It computes p′ ∈ conv(S) such that either d(p′, p) is within prescribed tolerance, or p′ certifies p ̸∈ conv(S). In order to improve its performance, we propose two randomized versions. Bounds on their expected complexity is identical with deterministic bounds. One is inspired by...

متن کامل

Randomized Parallel 3D Convex Hull Algorithm

This paper presents a randomize, coarse-grained, parallel algorithm which computes the 3-dimensional convex hull of a set of points with high probability in O(n log n p) time, where n is the number of points, and p is the number of processors. Furthermore, O(1) communication steps are used, with O(n=p) data sent at each step, by each processor. The material presented in this paper summarizes th...

متن کامل

Convex hull approximation of TU integer recourse models

We consider a convex approximation for integer recourse models. In particular, we show that the claim of Van der Vlerk [83] that this approximation yields the convex hull of totally unimodular (TU) integer recourse models is incorrect. We discuss counterexamples, indicate which step of its proof does not hold in general, and identify a class of random variables for which the claim in Van der Vl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete & Computational Geometry

سال: 2004

ISSN: 0179-5376,1432-0444

DOI: 10.1007/s00454-003-0836-1